
CICS	210	/	Assignment	03	

Copyright	©	2024	Marc	Liberatore	 	 	 	1	

Assignment 03: DNA sequence assembly
Start	this	assignment	early	and	don’t	wait	until	the	last	minute.	You	will	be	writing	
about	the	same	amount	of	code	(probably	less,	in	fact)	than	in	the	last	assignment,	but	it	
will	require	more	thinking	time.	It’s	the	kind	of	thing	you	might	be	asked	to	do	(in	Python)	
toward	the	end	of	160.	In	any	event,	this	is	an	assignment	you	may	not	be	able	to	rush	
through	on	a	Friday	afternoon.	

You	can	(and	should!)	use	Java’s	built-in	java.util.List	and	java.util.ArrayList	for	
this	assignment.	We’ll	make	it	clear	in	future	assignments	when	you’re	expected	to	“build	
your	own”	data	structures	(for	example:	the	next	one!).	

Overview

As	you	no	doubt	remember	from	high	school	biology,	the	“code	of	life”	is	written	in	DNA	
(and	its	pal,	RNA)	–	triplet	“codons”	encode	a	sequence	of	amino	acids,	which	are	
assembled	into	proteins,	and	so	on.	An	important	breakthrough	in	biological	sciences	was	
the	ability	to	replicate	DNA	in	vitro	(that	is,	not	in	a	cell,	but	in	a	test	tube)	using	the	
polymerase	chain	reaction	(PCR).	PCR	creates	many	copies	of	fragments	of	a	sequence	of	
DNA.	The	equipment	for	PCR	is	now	cheap	enough	that	some	high	schools	have	PCR	labs.	
PCR	has	many	applications.	For	example,	in	the	extremely	hypothetical	case	of	a	novel	
coronavirus	causing	a	worldwide	pandemic,	you	might	use	PCR	tests	to	determine	whether	
a	person	was	infected	with	such	a	virus.	

Another	breakthrough	was	the	ability	to	assemble	the	sequence	of	fragments	into	a	coherent	
whole,	thus	determining	the	genetic	code	(the	genome)	for	an	entire	organism.	For	
example,	the	Human	Genome	Project	has	sequenced	the	human	genome.	

In	this	assignment,	you’ll	solve	a	simplified	version	of	the	DNA	sequence	assembly	problem,	
using	a	simple	“greedy”	algorithm.	That	is,	given	a	collection	of	two	or	more	overlapping	
DNA	fragments,	you’ll	align	and	merge	these	fragments	by	choosing	the	best	matches	at	
each	step,	with	the	goal	of	ending	with	a	single	longer	sequence.	

We’ve	provided	a	set	of	unit	tests	to	help	with	automated	testing,	though	you	might	also	
want	to	write	a	class	with	a	main	method	for	interactive	testing.	As	before,	we’ve	disable	
the	timeout	code	so	you	can	use	the	debugger,	but	if	your	code	gets	stuck	during	testing,	
you	might	want	to	uncomment	these	two	lines	at	the	top	of	each	test	file:	

 @Rule	
 public Timeout globalTimeout = Timeout.seconds(10); // 10 seconds	

Goals
• Translate	written	descriptions	of	behavior	into	code.	
• Practice	writing	instance	methods,	including	overriding	methods	of	Object.	
• Practice	interacting	with	the	List	abstraction.	

https://en.wikipedia.org/wiki/Polymerase_chain_reaction
https://en.wikipedia.org/wiki/Human_Genome_Project
https://en.wikipedia.org/wiki/Sequence_assembly

CICS	210	/	Assignment	03	

Copyright	©	2024	Marc	Liberatore	 	 	 	2	

• Test	code	using	unit	tests.	

Downloading and importing the starter code

As	in	previous	assignments,	download	and	decompress	the	provided	archive	file	containing	
the	starter	code.	Then	import	it	into	Code	in	the	same	way;	you	should	end	up	with	a	dna-
sequence-assembly-student	project.	

What you will be doing

The	most	important	thing	to	understand	is	how	you’ll	assemble	shorter	overlapping	
fragments	into	longer	ones.	

First,	what	does	a	fragment	look	like?	It’s	a	sequence	of	one	or	more	nucelotides;	each	is	
one	of	adenine	(A),	cytosine	(C),	guanine	(G)	and	thymine	(T).	So	a	fragment	might	look	like	
one	of	

CGCAT	
CATGAC	
ACATG	

Next,	how	do	we	assemble	them?	We’re	going	to	use	a	simple	greedy	algorithm,	which,	
quoting	Wikipedia,	reads	as	follows:	

Given	a	set	of	sequence	fragments	the	object	is	to	find	the	shortest	common	
supersequence.	

1. Сalculate	pairwise	alignments	of	all	fragments.	
2. Choose	two	fragments	with	the	largest	overlap.	
3. Merge	chosen	fragments.	
4. Repeat	step	2	and	3	until	only	one	fragment	is	left.	

Let’s	look	at	the	first	few	steps	in	more	detail,	since	they’re	the	least	clear.	

Calculating pairwise alignments

What’s	a	pairwise	alignment	(and	what’s	its	overlap)?	Let’s	look	at	an	example.	Consider	
our	first	two	fragments,	listed	above:	CGCAT	and	CATGAC.	We	can	see	how	much	their	“ends”	
overlap	if	we	put	CGCAT	first	and	then	CATGAC:	

 these three overlap	
 vvv	
CGCAT	
 CATGAC	
 ^^^	
 these three overlap	

Here,	there’s	an	overlap	of	three	(CAT).	If	we	were	to	merge	these	together,	the	result	would	
be	CGCATGAC:	

CICS	210	/	Assignment	03	

Copyright	©	2024	Marc	Liberatore	 	 	 	3	

 CGCAT	
+ CATGAC	

 CGCATGAC	

If	we	tried	them	the	other	way	around,	what	would	the	overlap	and	merged	fragment	look	
like?	

 CATGAC	
+ CGCAT	

 CATGACGCAT	

Here	the	overlap	is	only	one	and	the	result	would	be	CATGACGCAT.	

You	should	now	see	(1)	that	any	two	fragments	can	have	an	overlap	of	at	least	zero	and	at	
most	the	length	of	the	shorter	fragment,	and	(2)	that	order	matters	when	comparing	
overlaps:	the	front	of	one	fragment	can	be	checked	against	the	rear	of	another,	but	that’s	
different	from	checking	the	rear	of	the	first	against	the	front	of	the	second.	

Finally,	note	that	we	will	only	consider	overlaps	on	the	end,	and	not	worry	about	one	
fragment	being	entirely	embedded	within	another.	That	is,	your	code	must	not	check	for	
things	like:	

 GCTCAGC	
+ TCA	

 GCTCAGC	

Though	two	identical	fragments	will	be	merged,	as	they	are	only	compared	on	the	end.	In	
other	words,	we	do	expect	you	to	merge	fragments	like:	

 GCTCAGC	
+GCTCAGC	

 GCTCAGC	

Choosing the largest overlap

Given	a	collection	of	fragments,	you	can	compare	every	fragment	against	every	other	
fragment	(in	both	orders)	and	find	the	pair	with	the	largest	overlap.	What	do	we	mean	by	
both	orders?	Consider	each	fragment	as	both	a	left	fragment	against	every	other	on	its	
right,	and	a	right	fragment	against	every	other	on	its	left.	

But	what	if	two	have	the	same	overlap?	I	want	you	to	break	ties	by	choosing	the	pair	whose	
merger	results	in	the	shorter	merged	sequence.	

If	there	are	further	ties,	do	what	you	like	—	I	will	make	sure	there	are	no	tests	that	are	
ambiguous,	and	I	don’t	want	your	merge	method	to	be	sixteen	special	cases	long.	

CICS	210	/	Assignment	03	

Copyright	©	2024	Marc	Liberatore	 	 	 	4	

(In	a	practical	sequence	assembler,	deciding	how	to	handle	ambiguity	is	very	important,	as	
are	many	other	cases:	What	about	“almost	perfect”	matches,	as	real	PCR	occasionally	
induces	errors	in	the	fragments?	Or	subsets,	which	I	told	you	to	ignore?	Or	how	little	
overlap	is	so	little	as	to	be	not	worth	merging?	And	so	on.	But	we	won’t	worry	about	those	
details	here.)	

Merging the fragments

Suppose	we	are	still	working	with	our	example	three	fragments,	CGCAT,	CATGAC,	and	ACATG.	
Further	suppose	they’re	stored	in	a	list,	which	we’ll	write	as	[CGCAT,	CATGAC,	ACATG].	

If,	after	checking,	we	decided	to	merge	the	first	two	(as	described	above),	our	list	would	
look	like:	[CGCATGAC,	ACATG].	Then	we’d	merge	again	and	be	left	with	a	single	entry	in	our	
list:	[CGCATGACATG].	

What to do

As	usual,	look	over	the	files	we’ve	provided.	The	Fragment	class	represents	a	single	
fragment;	the	Assembler	class	keeps	a	list	of	Fragments	and	assembles	them	into	longer	
Fragments.	

Start	with	the	Fragment	class.	Here	are	some	hints	to	get	you	started	there:	

• You’ll	need	to	store	the	nucleotide	sequence	in	an	instance	variable.	String	is	
probably	the	easiest	thing	to	use.	

• length	and	toString	should	be	straightforward,	if	you	used	a	String	to	store	the	
nucleotides.	

• You’ll	need	to	write	an	equals()	method	to	compare	the	current	(this)	Fragment	to	
another	Fragment o.	Use	Visual	Studio	Code	to	do	this	for	you,	on	the	basis	of	your	
instance	variable.	Do	not	be	alarmed	that	many	tests	will	fail	until	you	implement	
the	Fragment.equals()	method	–	not	because	your	other	code	is	wrong,	but	
because	the	tests	use	equals.	It’s	how	assertEquals	checks	for	equality	on	objects.	

• Look	over	the	instance	methods	of	String	when	writing	calculateOverlap	and	
mergedWith.	In	particular,	you	might	find	startsWith,	endsWith,	and	substring	
helpful.	Try	breaking	the	solution	up	into	conceptual	chunks.	

• One	such	chunk	to	consider:	You	might	add	a	new	method	boolean
hasOverlap(Fragment f, int overlapLength)	that	checks	(that	is,	returns	true)	if	
the	current	Fragment	overlaps	with	another	fragment	f	with	an	overlap	of	
overlapLength.	Then	use	it	to	implement	calculateOverlap	by	checking	iteratively	
checking	for	a	maximum-size	overlap,	then	one	less,	then	one	less,	etc.,	until	you	find	
the	largest	overlap.	

• If	you	choose	to	write	a	hasOverlap	method,	you	might	want	to	add	some	tests.	For	
example:	

 @Test	
 public void testHasNoOverlap() {	
 Fragment f = new Fragment("GCAT");	
 Fragment g = new Fragment("CGTA");	

https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/lang/String.html

CICS	210	/	Assignment	03	

Copyright	©	2024	Marc	Liberatore	 	 	 	5	

 assertFalse(f.hasOverlap(g, 1));	
 assertFalse(g.hasOverlap(f, 1));	
 }	
 	
 @Test	
 public void testHasSomeOverlap() {	
 Fragment f = new Fragment("GGGA");	
 Fragment g = new Fragment("AGGG");	
 assertTrue(f.hasOverlap(g, 1));	
 assertFalse(f.hasOverlap(g, 2));	
 assertTrue(g.hasOverlap(f, 1));	
 assertTrue(g.hasOverlap(f, 2));	
 assertTrue(g.hasOverlap(f, 3));	
 assertFalse(g.hasOverlap(f, 4));	
 }	

Once	you	have	Fragment	passing	the	tests,	start	on	Assembler.	Again,	some	hints:	

• The	constructor	and	getFragments	should	be	straightforward,	though	note	the	copy	
requirement	in	the	constructor	–	your	constructor	must	make	and	store	a	copy	of	
the	list	of	fragments	–	it	should	not	modify	the	original	list,	or	reference	it	except	to	
make	a	copy!	You	can	use	the	“copy	constructor”	of	ArrayList	to	do	this.	In	
particular,	if	you	pass	a	list	as	an	argument	to	the	ArrayList	constructor,	it	returns	
a	copy	of	the	list	you	passed	in.	(Specifically:	something	like	this.fragments = new
ArrayList<Fragment>(fragments);)	

• For	assembleOnce:	
– (Note	you	may	not	need	this	hint,	depending	upon	how	you	structure	your	

code.)	Sometimes	we	use	-1	or	0	as	the	initial	value	of	a	variable	that	we’re	
checking	against	to	track	a	maximum.	What	if	you	want	to	initialize	a	variable	
that’s	tracking	a	minimum?	Use	Integer.MAX_VALUE	in	this	case.	

– You’re	probably	going	to	need	to	write	a	nested	for	loop	(that	is,	a	for	loop	
inside	a	for	loop)	to	check	each	pair	of	fragments.	Remember	not	to	compare	
a	fragment	against	itself	(and	think	about	whether	this	check	should	be	using	
==	or	equals).	

– Remember	to	add	the	newly	created	merged	Fragment	to	the	list,	and	to	
remove	from	the	list	the	two	Fragments	that	were	merged.	

• assembleAll	will	be	a	one-	or	two-liner	once	you	get	assembleOnce	working	–	just	
call	assembleOnce	repeatedly	until	it	returns	false.	

Submitting the assignment

When	you	have	completed	the	changes	to	your	code,	you	should	export	an	archive	file	
containing	the	entire	Java	project.	To	do	this,	follow	the	same	steps	as	from	Assignment	01	
to	produce	a	.zip	file,	and	upload	it	to	Gradescope.	Note	that	if	you	want	things	to	upload	
faster,	you	can	use	an	external	program	to	zip	only	the	src/	directory	by	expanding	the	
project;	that’s	all	this	autograder	requires.	

CICS	210	/	Assignment	03	

Copyright	©	2024	Marc	Liberatore	 	 	 	6	

Remember,	you	can	resubmit	the	assignment	as	many	times	as	you	want,	until	the	
deadline.	If	it	turns	out	you	missed	something	and	your	code	doesn’t	pass	100%	of	the	
tests,	you	can	keep	working	until	it	does.	

